Dephasing of Electron Spin Qubits due to their Interaction with Nuclei in Quantum Dots

نویسنده

  • Ł. Cywiński
چکیده

Coherence of spins of electrons confined in III–V quantum dots is strongly affected by their hyperfine interaction with the nuclei. In this paper an introduction to this subject is presented. Some theoretical approaches to the problem will be outlined. Most attention will be given to the quasi-static bath approximation, to the cluster expansion theories of dephasing due to the nuclear dynamics induced by the dipolar interactions (spectral diffusion), and to the effective Hamiltonian based theory of dephasing due to hyperfine-mediated interactions. The connections between the theoretical results and various experiments will be emphasized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of external magnetic field on electron spin dephasing induced by hyperfine interaction in quantum dots

We investigate the influence of an external magnetic field on spin phase relaxation of single electrons in semiconductor quantum dots induced by the hyperfine interaction. The basic decay mechanism is attributed to the dispersion of local effective nuclear fields over the ensemble of quantum dots. The characteristics of electron spin dephasing is analyzed by taking an average over the nuclear s...

متن کامل

Quadrupolar and anisotropy effects on dephasing in two-electron spin qubits in GaAs.

Understanding the decoherence of electron spins in semiconductors due to their interaction with nuclear spins is of fundamental interest as they realize the central spin model and of practical importance for using them as qubits. Interesting effects arise from the quadrupolar interaction of nuclear spins with electric field gradients, which have been shown to suppress diffusive nuclear spin dyn...

متن کامل

Orbital hyperfine interaction and qubit dephasing in carbon nanotube quantum dots

Hyperfine interaction (HF) is of key importance for the functionality of solid-state quantum information processing, as it affects qubit coherence and enables nuclear-spin quantum memories. In this work, we complete the theory of the basic HF mechanisms (Fermi contact, dipolar, orbital) in carbon nanotube quantum dots by providing a theoretical description of the orbital HF. We find that orbita...

متن کامل

Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 mu s

Qubits, the quantum mechanical bits required for quantum computing, must retain their quantum states for times long enough to allow the information contained in them to be processed. In many types of electron-spin qubits, the primary source of information loss is decoherence due to the interaction with nuclear spins of the host lattice. For electrons in gate-defined GaAs quantum dots, spin-echo...

متن کامل

Manipulation of Two Individual Electron Spins and Dephasing Problem in Double Quantum Dots Integrated with a Micro - Magnet

Since the early proposal of spin-based quantum computing by Loss and DiVincenzo, much effort has been devoted to implement the relevant technologies for manipulating and detecting spin degrees of freedom in quantum dots (QDs). Universal sets of quantum gates are prepared by combination of spin qubit operation and SWAP1/2. Single spin qubits and SWAP have already been demonstrated using coupled ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011